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A separated flow in mixed convection 
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A numerical solution is presented for the flow of a uniform stream past a semi- 
infinite heated flat plate a t  whose surface the heat flux remains constant. The 
buoyancy forces oppose the free-stream motion and separation occurs. An ex- 
amination of the singularities in the skin-friction and heat-transfer coefficients 
suggests, rather surprisingly, a behaviour as (6, - $)g a t  separation. 

1. Introduction 
In  a numerical computation of the flow against the pressure gradient associated 

with a linearly decreasing mainstream velocity distribution, Howarth (1938) first 
noticed the irregular behaviour of an incompressible boundary layer near a point 
xs of zero skin friction. Further numerical computations by Hartree (1939) 
confirmed Howarth’s results and stimulated an investigation of the behaviour 
of the flow in this neighbourhood by Goldstein (1948). Purely on the basis of this 
numerical evidence Goldstein revoked his tentative analysis of 1930, which 
suggested an (xs - x ) i  behaviour of skin friction, in favour of an investigation in 
which it was assumed that the first condition for the absence of singularities was 
satisfied. Proceeding from this standpoint Goldstein was able to develop a 
formal expansion for the stream function about the point of zero skin friction. 
This included non-integral powers of x, - x whose coefficients were complicated 
functions of 7 = y/(xs - x) i ,  where y measured distance normal to the wall. In  
particular, the expansion forecast a structure close to the wall which resulted 
in a representation of skin friction which vanished as (x,-x)& in accordance 
with the numerical evidence. Anomalies associated with exponential decay were 
settled by Stewartson (1958), who modified the Goldstein expansion to include 
logarithmic terms whose presence obviated the need to satisfy certain integral 
conditions inherent in the Goldstein solution. The existence of, and structure at, 
the singularity is regarded as fully established. 

More recently discussions have centred on the behaviour of a laminar compres- 
sible boundary layer near a point of zero skin friction. Stewartson (1962) intro- 
duced the subject and following an analysis closely patterned on his earlier work 
on the incompressible case concluded that a general compressible laminar 
boundary layer can develop a singularity a t  a point of zero skin friction only if the 
heat transfer at that point is also zero. This surprising conjecture found support 
in the computations of Poots (1960) but was thrown in doubt when Williams 
(1965, private communication) produced numerical evidence of non-zero heat 
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transfer simultaneous with singular behaviour of the skin friction. Further 
numerical evidence of Merkin (1969) on the analogous problem of convection 
about a uniform-temperature semi-infinite plate in a parallel uniform stream 
strengthened the conviction that a more subtle structure, hinted at  by Brown & 
Stewartson (1969), would be required to settle the controversy. Buckmaster 
(1970, 1971) has pursued this possibility by treating the phenomenon as a para- 
meter perturbation problem following Kaplun’s (1967, chap. 3) analysis of the 
incompressible case. This approach has led him to distinguish between the cold- 
and hot-wall cases. In  the former case a structure involving the introduction of 
an infinity of new logarithmic-based terms into the Goldstein-Stewartson 
expansions leads to results which, in the main, agree with Merkin’s numerical 
integration and which hence contradict the Stewartson conjecture. However, 
it is interesting to note that close to separation the numerical and analytic results 
are still a t  variance. For the hot-wall case Buckmaster’s investigations support 
the Stewartson conjecture and again suggest regular behaviour when the heat 
transfer is non-zero. This conclusion remains in disaccord with Williams’s 
numerical evidence. 

Most certainly then, this problem provides a classical example of mutually 
beneficial interaction between analytic and numerical investigations. As Buck- 
master points out, however, accurate numerical integrations to separation are 
scarce. It was indeed fortuitous that Merkin’s work proved to be precisely mathe- 
matically analogous to the situation originally described by Stewartson. Also of 
interest in this work is the separation phenomenon in a context which is not 
completely governed by a mainstream pressure gradient but rather by the 
interaction of a uniform stream and retarding buoyancy forces. It is now possible 
to exploit this phenomenon in mixed convection to consider flow to separation 
in further circumstances amenable to accurate numerical integration. A circum- 
stance which particularly commends itself is the amendment of the uniform- 
temperature constraint for a plate to that of uniform heat flux. It is this situation 
that this paper seeks to examine. It is anticipated that such numerical informa- 
tion will provide the basis for a further investigation into the structure of the 
irregularities a t  a point of zero skin friction. Any information, additional to the 
limited body of literature on this intriguing question of separation within the con- 
text of boundary-layer equations, would seem to be welcome at  the present time. 

2. The problem 
A uniform stream U flows along a semi-infinite flat plate extending vertically 

downwards with its leading edge horizontal. Heat is supplied to the flow by 
diffusion and convection from the plate as a result of a uniform heat flux q from 
the surface. This heating, relative to the surrounding ambient temperature To, 
gives rise to buoyant body forces which oppose the free stream. It is anticipated 
that, near the leading edge, there is little opportuinty for heat from the plate to 
be taken into the fluid and that consequently the boundary layer is formed chiefly 
as a result of retardation of the free stream. As the boundary layer develops the 
effect of buoyancy forces increases until eventually separation occurs. 
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U2/a2 < AT/To < I ,  
If it  is assumed that 

36 1 

where a is the velocity of sound in the fluid and AT = T, - To, with T, the local 
temperature a t  the plate, heating due to viscous dissipation can be neglected and 
the fluid considered incompressible, so that changes in density are significant 
only in producing buoyancy forces. The kinematic viscosity v and the thermo- 
metric conductivity K can then be taken as constant and the boundary-layer 
equations become au av 

-f- = 0, (1) ax ay 

Here u and v are velocity components associated with increasing x and g respec- 
tively, where x measures distance along the plate from the leading edge x = 0 
and y is measured normally outwards from the plate. T is the temperature of the 
fluid, g is the acceleration due to gravity and /3 is the coefficient of thermal expan- 
sion. Equations (1)-(3) are to be solved subject to the boundary conditions 

u + U ,  T+To as y + m ,  

u = U ,  T = T o  a t  x = O ,  

(4) 

where k is the thermal conductivity. 

3. Transformations 
The non-dimensional parameters governing the flow comprise the local Rey- 

nolds number Re = UxIv, Grashof number Gr = g/3ATx3/v2 and Nusselt number 
N u  = qx/kAT. A dimensional analysis of (1)-(3) is instrumental in obtaining a 
non-dimensional characteristic distance variable 

which appropriately reflects the local relativeimportance of viscous and buoyancy 
forces. Near the leading edge viscous forces dominate and the boundary layer is 
formed mainly by the retardation of the free stream U .  This leads naturally to 
the following transformations: 

Y! = (2vUx)V(E, r ) ,  

where Yr is the stream function, 7 = y( U/2vx)& and is as in ( 5 )  above. 
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As a result of these transformations the boundary-layer equations now read 

with boundary conditions 

where r = Y / K  is the Prandtl number. 

tion of the full boundary-layer equations. 
Equations (6) and (7) now provide the basis for a step-by-step numerical solu- 

4. Numerical solution 
In examining the flow associated with a retarded mainstream Terrill (1960) 

presented a method of solution incorporating the ideas of Hartree & Womersley 
(1937) and Leigh (1955). By replacing derivatives in the 5 direction by differences 
and all other quantities by averages the method exploits the parabolic nature of 
the equations and seeks to establish a velocity profile a t  a station c2 downstream 
of a station el a t  which the velocity profile is known. A step-by-step solution 
ensues whose accuracy is limited only by the time and space required to perform 
the calculations on the computer. 

This method is adapted to deal with the present circumstances, which requires 
the inclusion of a temperature distribution as well as that of velocity. With 
q = @/a?, and q,, U,, qz and 8, the values of velocity and temperature a t  stations 
el and c2 respectively, the average quantities 

u = u,+e,, v = ql+q2 

are introduced. If < derivatives are replaced by differences and the representa- 
tions u(m) and v ( ~ )  used for the mth iterative approximations to u and v these 
definitions lead to the following equations for dm+l) and dm+l): 

- &u(m+l) v(m+l) - hv(m+l) (u(m+l) - 28,) = 0,  (10) 

where h = (5, + &)/(<2 - c,). The iterative procedure of solution requires calcula- 
tion of vfrn+l) from (9) prior to its use in (10). This procedure is found to converge 
readily. 
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Equations (9) and (10) are now solved by introducing finite differences in the 
7 direction. As a result the problem reduces to the solution of two matrix equa- 
tions of the form 

ACdvh+U = &), B(m)u(m+l) = d(4, (11) ,  (12) 

where the elements of the column vectors dm) and d(") are all known and specifi- 
cally incorporate boundary conditions at the wall and infinity (understood to be 
some suitably large value of 7). A(m) proves to be the same matrix as that given 
by Terrill(l960) and B(m) is a band matrix as in Merkin (1969). Accordingly ( 1  1) 
and (12) are solved using the method of Choleski, following these previous 
authors, The recovery of the velocity and temperature distributions q2 and 8, at 
t2 is now a formality. It remains to initiate the integration. 

The initial profiles are taken as those similarity solutions of the reduced form 
of (6) and (7) obtained after setting 5 = 0 and suppressing 6 derivatives. Since the 
iteration process fails to converge a t  5 = 0 the integration is begun a t  

= 5 x 10-6, 

with an initial step length of 5 x Subsequent step lengths are duly enlarged 
when the maximum number of iterations needed in going from tl to t2 is less 
than 4. 

Errors arise from using finite differences in both the 5 and 7 directions. The 
size of truncation errors in the 7 direction can be checked using finite-difference 
estimates whilst errors in the 5 direction are controlled by prescribing a maxi- 
mum modulus of deviation between a one-step and two-step solution between 
stations and 5,. The values of q2 and O2 obtained from integrating a t  the half- 
intervals are the ones used as initial profiles for the next full step of the solution. 
The level of accuracy achieved is governed solely by the limitations on available 
storage space. In  this instance integrations in the 7 direction were carried out 
with 7 = 0.1 (0.1) 7.2 and a maximum modulus of deviation of 5 x 10-5. An 
overall accuracy of at least three decimal places is therefore anticipated. 

5. Flow parameters 
The aim of this investigation has been to obtain the point a t  which separation 

occurs, understood in the context of this paper to be the point of zero skin fric- 
tion, and examine the behaviour of the boundary-layer equations at this station 
as suggested by the numerical evidence. It is desirable therefore to incorporate 
into the numerical integration program an evaluation of this fundamental flow 
parameter, given by the skin-friction coefficient 

Other flow parameters of interest are the heat-transfer coefficient 
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the momentum thickness 

and the temperature thickness 

On7 = 0 aZq/a72 = - 5[+(e),, a3q/a~f = - 56% 

and a Taylor series expansion for q, a t  fixed t, yields 

(agpv), = [(i6g,-g2+ 3oh2t~(6) ,+~h35+) /14h]  +o(h4). (17)  

This representation and the use of the Euler-Maclaurin formula to calculate 
the integrals in (15) and (16) facilitates the evaluation of the above flow para- 
meters from velocity and temperature profiles a t  a particular station. 

6. (g Initial and separation projiles 
Numerical integration is initiated using temperature and velocity distributions 
6,(7) andfh(7) obtained as solutions of the following fifth-order system of ordinary 
nonlinear differential equations : 

f: + f o f ;  = 0, (18) 

e~+fo6~-6ofh = 0, (19) 

where a prime indicates d/dy, subject to boundary conditions 

Solution of this two-point boundary-value problem is accomplished once 
values of fi(0) and 6,(0) have been established which lead to the correct behaviour 
at infinity when (18) and (19) are integrated outwards from 7 = 0.  These values 
are f l ( 0 )  = 0.4696, 6,(0) = - 1.5406. 

Separation occurs when 6 = f;, = 0.141955, 

at which station fl(0) = 0;  6,(0) = - 1.9731. 

Initial and separation velocity and temperature profiles are plotted in figure 1. 
Numerical tabulations of intermediate profiles are available from the author. 

Numerical results 

Table 1 gives the values of flow parameters a t  various 5 up to, and including, 
separation. Figures 2(a)  and ( b )  indicate graphically the behaviour of both the 
skin-friction coefficient and the heat- transfer coefficient in the vicinity of separa- 
tion. From them it is seen that 
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Xtructural evidence 

To confirm the validity of his suggested structure in the vicinity of separation 
Buckmaster analysed Merkin’s numerical results for skin friction and heat 
transfer on a log-log scale. It was clear that both parameters behaved approxi- 
mately as (x, - x)g except close to separation. This satisfied Buckmaster that his 
expansion structure was correct. From his analysis the skin friction would vanish 
as (x, - x)* log (x, - x), which, in numerical work, would only be revealed as ap- 
proximate square-root behaviour. The discrepancy in the immediate vicinity of 
separation was accredited to errors in Merkin’s tabulated results. It is instructive 
to examine the numerical evidence of this paper in a similar manner and log-log 
plots of skin-friction and heat-transfer coefficients are presented in figure 3. 
Bearing in mind that there is some doubt as to the true accuracy of the fourth 
decimal place in table 1, the evidence nevertheless points overwhelmingly to a 
behaviour as ([, - [)% for both skin friction and heat transfer. The discrepancies 
between this conjecture and the results in the immediate vicinity of separation 
may again be attributed to accuracy limitations of the numerical solution. 

7. Discussion 
In  his first examination of the boundary-layer equations Goldstein (1930) 

acknowledged the roleofthe transformation = d i n ,  T L E ~  = y,Y(x,y) = cn-lf([ ,  y), 
in terms of which u = (n-zf,/n. Expanding f(<,r) as a power series in ( with 
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FIGURE 3. Log-log plot. x , skin friction; + , heat transfer. 

coefficients functions of 7 and considering the limiting behaviour as 7 +co led to an 
appreciation of the value of n appropriate to extending solution of the boundary- 
layer equations for given forms of initial profile. In particular, the value n = 4 
was demonstrated as appropriate to a profile incorporating a double zero a t  the 
origin, i.e. a separation profile 

u,, = a2y2+a3y3+ ..., 
= a,E2~2+a3&3+ ... . 

Such transformation in conjunction with series solution appeared to suggest 
a skin friction vanishing as (x8 -,)a since the general solution for the coefficient 
of E2 allowed a finite contribution at 7 = 0. Only under the specification a2 = 4, 
coinciding with the fulfilment of the first condition for the absence of singulari- 
ties, were theory and numerical evidence reconciled. No instances of physical 
significance were to hand for n > 4. Perhaps the contents of this paper provide 
such an instance. A fifth-root transformation would certainly seem to be required 
to give any chance of dealing with the skin-friction behaviour of figure 3. The 
question then arises as to the nature of the separation profile which can fit into 
this picture and the correlation between its coefficients and those of a skin-friction 
series solution. Furthermore will one have to resort to a structure of the Buck- 
master type to establish consistency between theoretical and numerical results? 
A theoretical investigation into these questions is at present in progress. 
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